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Abstract

Mechanics of bubble collapse in binary mixtures with heat and mass transfer has been investigated in this paper. The

¯ow ®eld surrounding a collapsing bubble undergoing buoyancy-driven motion was solved using adaptive ®nite-dif-

ference method. A curvilinear coordinate system is employed to keep track of the changing bubble shape. The moving

boundary feature is considered as an integral part of the governing equations. The bubble collapse rate, velocity,

temperature and species concentration ®eld, and simulation of the bubble collapsing process have been

reported. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bubbles, as ¯uid particles, are of importance in a host

of physical and chemical processes that involve gas±

liquid interaction. Bubble collapse is one of the primary

phenomena occurring in bubble column reactors and

bubble absorbers in the absorption refrigeration sys-

tems. The ¯uid mechanics of bubble collapse, upon

which the heat and mass transfer are strongly depen-

dent, is particularly complex and its knowledge is lim-

ited. So far, there are only few reported results on

spherical bubble collapse based on potential ¯ow as-

sumptions [1,2].

An important analytical solution for ¯ow around

¯uid spheres was given by Hadamard [3] and Ry-

bczynski [4]. The solution is derived for slow viscous

¯ow past ¯uid spheres when the viscous e�ect is so

pronounced that the bulk convection can be neglected,

namely creeping ¯ow. As the Re increases, the creeping

¯ow condition no longer exists. Levich [5] adopted

boundary layer theory and predicted the velocity pro®le

near the bubble surface. His work was later proved valid

up to Re of 200 by Hamielec et al. [6] using ®nite dif-

ference method. Brabston [7] also studied the steady

viscous ¯ow past a ®xed size spherical gas bubble for Re

in the range of 0.1 < Re < 200. He used the method of

series truncation to reduce the problem to a nonlinear

boundary value problem, then solved it by the ®nite

di�erence method. Bubble shapes may be altered when

the bubble rises through the ambient liquid. The defor-

mation of bubbles is subject to the external ¯ow ®eld

until normal and shear stresses reach balance at the in-

terface. Generally, a bubble in an unbounded New-

tonian ¯uid may take one of the following shapes during

its life span: spherical, ellipsoidal, ellipsoidal-cap and

spherical-cap. Clift et al. [8] provided a shape regime

map for bubbles and drops. Bubbles are ellipsoidal at

relatively high Re and intermediate Eo (� Dqgd2
e =r),

spherical- or ellipsoidal-cap at high Re and Eo. Large

bubbles and drops tend to have ¯at bases and lack the

semblance of fore-and-aft symmetry. These ¯uid parti-

cles usually have ``spherical-cap'' or ``ellipsoidal-cap''

shape.

Ryskin et al. [9,10] developed a numerical scheme to

investigate the wake structures behind ®xed size ellip-

soidal and spherical-cap bubbles under steady-state

condition. It was shown that the bubble shape and the

velocity and pressure ®elds in the ¯uid are intimately

interconnected. Later, Takagi et al. [11] extended

Ryskin's results to unsteady-state condition.

Florschuetz [12] made use of Plesset±Zwick [13]

temperature integral and identi®ed that bubble collapse

could be controlled by heat transfer or liquid inertia in a

single component system. For bubble collapse at mod-

erate temperature di�erence between the vapor and the
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subcooled liquid, the heat transfer dominates the volu-

metric decrease of the bubble. Using holographic inter-

ferometry and high-speed cinematography, Chen et al.

[14] measured the heat transfer at the interface of vapor

bubbles condensing in a subcooled liquid of the same

substance. Their experiment suggests that bubble col-

lapse can be considered heat transfer controlled if Jakob

number is below 60.

Vapor bubbles absorbed into subcooled multi-com-

ponent solutions are common occurrences in absorbers

and other gas±liquid contacting equipment. Combined

heat and mass transfer adds some complexity to the

bubble absorption problem. But the major di�culty

still lies in obtaining accurate description of ¯uid mo-

tion around a non-spherical collapsing bubble. The

impact of the ¯ow ®eld on the collapse rate has been

recognized but little is known. This paper examined the

importance of three factors in bubble collapse dy-

namics: non-spherical bubble shape, ¯uid dynamics

around a collapsing bubble and absorption in binary

solutions.

2. Problem formulation

We are concerned with the speci®c problem of the

buoyancy-driven motion of a single bubble in an un-

bounded quiescent binary ¯uid accompanied by the

bubble collapse due to the subcooling of the ambient

liquid. The ¯uid is assumed to be Newtonian. The

bubble undergoes translatory movement without oscil-

lation at its terminal velocity. The bubble volume de-

creases as heat and mass transfer occurs through the

interface. Since mass di�usion causes heat-release during

an exothermic process, heat transfer near the bubble

surface has phenomenal impact on the mass transfer.

Inside the bubble, the temperature and concentration

distributions are presumed to be uniform. This is sup-

ported by the fact that the internal circulation facilitates

creating uniform ®elds. Outside the bubble, the liquid is

assumed to be incompressible and have constant ther-

modynamic and transport properties except for tem-

perature and concentration. At the bubble interface,

thermal equilibrium prevails and free surface is assumed.

Nomenclature

a semimajor axis

b semiminor axis

d bubble diameter (m)

D0 initial bubble diameter (m)

Dij mass di�usivity (m2 sÿ1)

Eo Eotvos number (� Dqgd2
e =r)

h enthalpy (J kgÿ1) or bubble surface pro®le

Dhlv heat released per unit mass of vapor absorbed

(J kgÿ1)

J Jacobian term

Ja Jakob number (� qlCplDT=qv�hv ÿ hl�)
k conductivity (W mÿ1 Kÿ1)

_m mass reduction rate (� dm/dt) (kg sÿ1)

Mo Morton number (� l4gDq=q2r3�
n normal direction

p pressure (Pa)

Pr Prandtl number (� m/a)

r axisymmetric coordinate

R bubble radius (m)
_R bubble collapsing rate (� dR/dt) (m sÿ1)

Re Reynolds number (� qUtD0=l)

Sc Schmidt number (� m=Dij)

t time (s) or tangential direction

T temperature (K)

T stress tensor

u velocity component in r direction (m sÿ1)

Ut bubble terminal velocity (m sÿ1)

U � contravariant velocity component

v velocity component in z-direction (m sÿ1)

V � contravariant velocity component

vl;n normal velocity of liquid at the interface

(m sÿ1)

We Weber number (� qU 2
t d=r)

z axisymmetric coordinate

Greek symbols

a thermal di�usivity (m2 sÿ1)

c curvilinear coordinate component

g curvilinear coordinate component

u normalized mass concentration (� (x ) x1)/

x1)

h dimensionless temperature

l dynamic viscosity (kg mÿ1 sÿ1)

m kinematic viscosity (m2 sÿ1)

q total density of liquid, i.e., ql (kg mÿ3)

r surface tension (N mÿ1)

s stress (Pa)

xi mass concentration of ammonia (� qi/q)

xj mass concentration of water

n curvilinear coordinate component

w dimensionless stream function

f dimensionless vorticity

Subscripts

0 initial value

e equivalent

i ammonia

j water

l liquid

s interface

v vapor

1 ambient
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Since the bubble shape is normally axisymmetric, the

¯ow around the bubble is also assumed axisymmetric.

The collapsing process starts immediately after a

bubble is introduced into a subcooled liquid. From an

observerÕs point of view, the bubble is rising through the

quiescent liquid. But it can also be viewed as the liquid

¯owing past a stationary bubble. The formulation of the

problem is facilitated by choosing the centroid of the

bubble as the origin of the coordinate system. In line

with the above assumptions, the governing equations

can be expressed as

o�rQ�
ot
� o�rE�

or
� o�rF�

oz
� o�rEv�

or
� o�rFv�

oz
� rH; �1�

where

Q �

q
qu
qv
qe
qi

0BBBB@
1CCCCA; E �

qu
quu
quv
que
qiu

0BBBB@
1CCCCA; F �

qv
quv
qvv
qve
qiv

0BBBB@
1CCCCA; �2�

Ev �

0

srr

szr

ÿqr

ÿjir

0BBBBBB@

1CCCCCCA; Fv �

0

srz

szz

ÿqz

ÿjiz

0BBBBBB@

1CCCCCCA; H �

0

ÿshh=r

ÿqg

0

0

0BBBBBB@

1CCCCCCA;
�3�

srr � ÿp � 2l
ou
or
; qr � ÿk

oT
or
;

szz � ÿp � 2l
ov
oz
; qz � ÿk

oT
oz
;

srz � szr � l
ov
or

�
� ou

oz

�
; jir � ÿDij

oqi

or
;

shh � ÿp � 2l
u
r
; jiz � ÿDji

oqi

oz
:

�4�

The axisymmetric coordinates being used is shown in

Fig. 1 wherein z-axis is the symmetric axis about which

the oblate object is formed by revolution. The subscripts

i and j refer to species i and j, respectively. Dij�Dji

denotes mass di�usivity.

The governing equations can be expanded and

transformed into non-dimensional form by introducing

the following non-dimensional variables:

r0 � r
D0

; z0 � z
D0

; t0 �Utt
D0

;

u0 � u
Ut
; v0 � v

Ut

; p0 � p
qU 2

t

; h� T ÿT1
T1

; ui�
xiÿxi1

xi1
;

Re�qUtD0

l
; Pr� m

a
; Sc� m

Dij
; Fr� U 2

t

gD0

: �5�

D0 is the initial diameter of the bubble and Ut is the

bubble terminal velocity, the magnitude of Ut ranges

from 0.20 to 0.30 m/s. Bubble terminal velocity normally

is not constant and depends on many factors including

bubble shape and size, etc. But experimental evidence

shows that the bubble moves with a nearly constant

velocity over a major portion of its life span. For the

bubble diameter from 1 to 20 mm, which is the range we

are most interested in, the bubble terminal velocity is

nearly unchanged [8]. Chen and Mayinger [14] used

high-speed cinematography technique studying heat

transfer around a condensing bubble. Their experiment

demonstrated that the bubble reaches a constant equi-

librium velocity shortly after detaching from the nozzle.

In practice, many correlations have been developed to

predict terminal velocity among which Grace's correla-

tion is used in this paper [8].

After dropping the prime for simplicity, we arrive at

the dimensionless governing equations:

(a) continuity equation

o�ru�
or
� o�rv�

oz
� 0; �6�

(b) r-momentum equation

ou
ot
� u

ou
or
� v

ou
oz
� ÿ op

or
� 1

Re
r2u
�

ÿ u
r

�
� ÿ op

or
� 1

Re
o
or

1

r
o
or
�ru�

� ��
� o2u

oz2

�
; �7�

(c) z-momentum equation

ov
ot
� u

ov
or
� v

ov
oz
� ÿ op

oz
� 1

Re
r2vÿ 1

Fr

� ÿ op
oz
� 1

Re
1

r
o
or

r
ov
or

� ��
� o2v

oz2

�
ÿ 1

Fr
; �8�

(d) energy equation

oh
ot
� u

oh
or
� v

oh
oz
� 1

RePr
r2h

� 1

RePr
1

r
o
or

r
oh
or

� ��
� o2h

oz2

�
; �9�

Fig. 1. Axisymmetric coordinate system.
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(e) species continuity equation

oui

ot
� u

oui

or
� v

oui

oz
� 1

ReSc
r2ui

� 1

ReSc
1

r
o
or

r
oui

or

� ��
� o2ui

oz2

�
;

�10�
where

r2 � 1

r
o
or

r
o
or

� �
� o2

oz2
� o2

or2
� 1

r
o
or
� o2

oz2
: �11�

The axisymmetric assumption allows us to transform

the momentum equations given above into the stream

function-vorticity type

of
ot
� o�uf�

or
� o�vf�

oz
� 1

Re
o
or

1

r
o
or
�rf�

� ��
� o2f

oz2

�
; �12�

o2w
or2
ÿ 1

r
ow
or
� o2w

oz2
� ÿrf; �13�

where w and f are dimensionless stream function and

vorticity de®ned as

u � ÿ 1

r
ow
oz
; v � 1

r
ow
or
; �14�

f � ou
oz
ÿ ov

or
� ÿ 1

r
ow2

oz2
ÿ o

or
1

r
ow
or

� �
: �15�

Initially, the entire system is assumed to be at uni-

form temperature, pressure and concentration which

coincide with the bulk liquid condition

u � 0; v � ÿ1; h � 0; ui � 0: �16�
Boundary conditions are speci®ed at three distinct

locations: at the symmetric axes, at the far ®eld and at

the interface.

(1) At the symmetric axis (z� 0):

ou
or
� 0;

ov
or
� 0;

oh
or
� 0;

oui

or
� 0: �17�

(2) At the far ®eld (r�1):

u � 0; v � ÿ1; h � 0; ui � 0: �18�

(3) At the bubble surface, the vapor±liquid interface is

treated as a free surface. Generally, free surface requires

satisfaction of zero tangential stress at any point on the

bubble surface. Let us assume the state of stress at one

point on the free surface is described by the stress tensor

T. Then the tangential stress can be expressed as [15]

�T � n� � t � �T � n�z�tz��T � n�r�tr

� sr zn2
r � sz znrnz ÿ sr rnrnz ÿ sr zn2

z ; �19�

where nr, nz, tr and tz are unit vectors de®ned as

nr � 1��������������������������
1� oh=oz� �2

q ; nz � ÿ oh=oz� ���������������������������
1� oh=oz� �2

q ;

tr � oh=oz��������������������������
1� oh=oz� �2

q � ÿnz; tz � 1��������������������������
1� oh=oz� �2

q � nr;

�20�
h�z; t� denotes the bubble surface pro®le and

jnj � jtj � 1. Zero tangential stress means

sr zn2
r � sz znrnz ÿ sr rnrnz ÿ sr zn2

z � 0: �21�
This condition determines the tangential velocity of

the liquid on the bubble surface. Using Eqs. (4) and (5),

we can rewrite Eq. (21) in the following forms:

ov
or

�
� ou

oz

�
�1ÿ h0

2� ÿ 2
ov
oz

�
ÿ ou

or

�
h0 � 0; �22�

where h0 � oh=oz.

(4) Bubble surface temperature is assumed to be con-

stant. This is consistent with the fact that the gas inside

the bubble is assumed to be uniform in temperature and

concentration due to internal circulation. Usually, the

bubble surface temperature may vary with the location,

but the degree of variation is very small. This can be ex-

plained as the result of strong di�usion in the vapor phase

compared to di�usion in the liquid phase [2]. Internal

circulation contributes to an evenly distributed temper-

ature and concentration ®eld inside the bubble and along

the bubble interface [8]. The bulk liquid is subcooled and

the degree of subcooling is the driving force of the bubble

collapse. The degree of subcooling normally ranges from

3°C to 11°C depending on operating conditions. Com-

pared to the degree of subcooling, the bubble surface

temperature variation can be neglected.

(5) Finally, thermal equilibrium assumption at the

interface leads to

xis � f �Ts; p�; �23�
which means the mass fraction of species i can be de-

termined from the interfacial temperature and pressure.

xi represents the mass fraction of species i in the liquid

and is de®ned as xi � qi=q. qi is the mass concentration

of species i, and q is the total mass concentration of the

liquid. For the binary mixture,xi � xj � 1. The prop-

erties of ammonia±water mixture were evaluated by

McGahey's code [16] that uses source data from Reistad

[17], Klein [18] and Ziegler [19].

Although the physical problem has been greatly

simpli®ed with many assumptions, it is still an unsteady,

two-dimensional axisymmetric, moving boundary,

phase change problem. These complexities make the

mathematical problem as proposed not amenable to

analytical solution. As a result, numerical method is

1414 J. Cao, R.N. Christensen / International Journal of Heat and Mass Transfer 44 (2001) 1411±1423



deemed to be a feasible approach. However, successful

numerical solution demands more than a well-posed

mathematical model. First, computational domain has

to be well de®ned, which in our case requires consider-

ation of irregular domain representation such as curvi-

linear coordinate system. Second, the moving boundary

problem will add some complexity to the original gov-

erning equations.

3. Analysis

3.1. Bubble shape

In this study, a model proposed by Grace [20] is

employed to simplify the prediction of the deformation

of a ¯uid particle, otherwise the normal stress boundary

condition must be used to determine bubble shape [21].

The approximate model is termed ``double semi-ellip-

soidal model'' which assumes a distorted ¯uid particle is

of a double semi-ellipsoidal shape as depicted in Fig. 1.

The model has two equations to determine the two semi

minor axes, b1 and b2, provided the semi major axis a is

given. It assumes that the shape of a particle is primarily

a function of hydrostatic pressure, surface tension, and

external hydrodynamic pressure forces. The model

considers the force balance the key factors dictating the

bubble shape. The two equations proposed for double

semi-ellipsoidal model are:

1

4
Eo�1ÿe2

1�1=2�1ÿ cosg1�

� �1ÿe2
1�1=2

2

"
ÿ �2ÿe2

1 sin2g1�
�1ÿe2

1 sin2 g1�3=2

#
� We sin2g1

4k2
3�1ÿe2

1 sin2g1�
;

�24�

�8� Eo� b2

a

� �3

ÿ 4
b2

a

� �2

ÿ 4 � 0; �25�

where

e2
1 � 1

�
ÿ b2

1

a2

�
; k3 � 1

e3
1

� sinÿ1 e1 ÿ e1�1ÿ e2
1�1=2�: �26�

The above equation is numerically solved for e1 and

b1. The model predicts a gradual and progressive ¯at-

tening of the posterior portion of the bubble as we will

see later. The surface tension tends to maintain a

spherical shape whereas the dynamic forces act to ¯atten

and hydrostatic forces act to elnogate. The ®nal shape of

the bubble is the balance of the three e�ects.

3.2. Bubble collapse rate

The bubble collapse rate is an important parameter

in the analysis of bubble collapse dynamics and can

be determined by the energy balance at the bubble

interface

_m00Dhlv � ÿkl

oT
on

� �
s

; �27�

where _m00 is the total mass ¯ux from vapor to liquid,

which is actually the absorption rate in binary solutions.

It is positive when the vapor mass is absorbed into the

liquid. Dhlv represents the heat released per unit mass of

vapor absorbed and it is evaluated at constant pressure.

Dhlv � hv ÿ hl ÿ �xv ÿ xl��oh=ox�p. The absorption rate

can be evaluated by adding up the mass ¯uxes of com-

ponent i and j, where mass ¯ux of each component is the

total e�ect of molecular di�usion and bulk convection

[22]

_m00 � _m00i � _m00j

�
�
ÿqDij

oxi

on

� �
s

� qi�vl;n ÿ _R�
�

�
�
ÿqDji

oxj

on

� �
s

� qj�vl;n ÿ _R�
�
; �28�

where vl;n is the normal velocity of the liquid at the in-

terface. For a collapsing bubble, the liquid normal ve-

locity at the bubble surface is related to the bubble

surface moving velocity _R through the mass balance

across the interface [2]

qv�vv;n ÿ _R� � ql�vl;n ÿ _R�: �29�
Neglecting the vapor velocity [12], we obtain

vl;n � _R 1� ÿ qv=ql� � _R; �30�
since qv � ql is usually valid. This indicates the liquid

normal velocity at the bubble interface is almost iden-

tical to the bubble interface moving velocity. If there is

no mass transfer across the interface, vl;n is strictly

identical to _R. Making use of Eq. (30), we can simplify

Eq. (28) into

_m00 �
�
ÿqDij

oxi

on

� �
s

� qi�vl;n ÿ _R�
�

�
�
ÿ qDji

oxj

on

� �
s

� qj�vl;n ÿ _R�
�
� ÿqv

_R; �31�

_R � dR=dt is the rate of bubble radius reduction and is

called bubble collapse rate in this study. It is so de®ned

that it has a negative value when the bubble is shrinking.

Now Eq. (27) can be rewritten in non-dimensional form

_R0 � kT1
qvUtDhlvD0

oh
on0

� �
s

: �32�

This equation shows that the temperature gradient

around a bubble is one of the factors dictating the

bubble collapse rate. Since the temperature gradient at

the bubble surface is negative in our case, the bubble

J. Cao, R.N. Christensen / International Journal of Heat and Mass Transfer 44 (2001) 1411±1423 1415



collapse rate has a negative value, which is consistent

with our sign convention.

3.3. Curvilinear coordinate system

A curvilinear coordinate system provides a ¯exible

means to keep track of the changing boundary shape.

The implementation of a curvilinear coordinate system

is through mapping the physical domain �r; h; z� to the

computational domain �n; g; c�. To improve the resolu-

tion in certain regions of the physical ®eld, the grid is

made clustered toward the bubble interface so that the

large variation in velocity, temperature and concentra-

tion can be captured truthfully. We know

o
or
� nr

o
on
� cr

o
oc
;

o
oz
� nz

o
on
� cz

o
oc
:

�33�

The subscripts denote derivatives with respect to the

corresponding variables. The question is to express nr,

nz, cr, cz in terms of rn, rc, zn, zc. This is achieved by

utilizing general 3-D mapping function [23]. Generally,

we can con®gure a one-to-one mapping from �x; y; z�
coordinate system to another coordinate system �n; g; c�:
�x; y; z� () �n; g; c�. But in our case, the axisymmetric

condition says,

x � r�n; c�cos g; y � r�n; c� sin g; z � z�n; c�: �34�
Using the above equations and after some algebraic

manipulation, we obtain [21]

nx �
ygzc ÿ yczg

J
� rzc

J
;

ny � xczg ÿ xlzc

J
� 0;

nz � xgyc ÿ xcyg

J
� ÿ rrc

J
;

gx �
yczn ÿ ynzc

J
� 0;

gy �
zcxn ÿ znxc

J
� 1

r
;

gz �
xcyn ÿ xnyc

J
� 0;

cx �
ynzg ÿ ygzn

J
� ÿ rzn

J
;

cy �
znxg ÿ zgxn

J
� 0;

cz �
xnyg ÿ xgyn

J
� rrn

J
;

�35�

where J is the Jacobian given by

J �
xn yn zn

xg yg zg

xc yc zc

������
������ �

rn 0 zn

0 r 0
rc 0 zc

������
������ � r

rn zn

rc zc

���� ����
� rJ2 � r�rnzc ÿ rczn� �36�

and rn; rc; zn; zc, etc. are called the metrics of the trans-

formation. Substituting all the available derivatives back

into Eq. (33), we have

o
or
� nr

o
on
� cr

o
oc
� r

J
zc

o
on

�
ÿ zn

o
oc

�
;

o
oz
� nz

o
on
� cz

o
oc
� r

J

�
ÿ rc

o
on
� rn

o
oc

�
:

�37�

These equations will be used to transform governing

equations and associated boundary conditions from

axisymmetric system into the curvilinear system. Besides

above equations, Laplace operator is frequently used in

Navier±Stokes equation, and it can be expressed in the

curvilinear coordinates as

r2
ng �

1

J
o
on

rA
o
on

� ��
� o

on
rB

o
oc

� �
� o

oc
rB

o
on

� �
� o

oc
rC

o
oc

� ��
; �38�

where

A � z2
c � r2

c

J2

; B � ÿ znzc � rnrc

J2

; C � z2
n � r2

n

J2

: �39�

With the above knowledge, we are able to rewrite the

governing equation and associated boundary conditions

in terms of the curvilinear boundary-®tted coordinates.

But before doing that, let us consider the moving

boundary feature since it has to be incorporated as an

integral part of our governing equation in the curvilinear

coordinate system.

3.4. Moving boundary feature

For a moving boundary problem, the boundary

changes its spatial location with time. In our case, the

bubble surface is moving as the bubble collapses. There

exist several techniques for tracking arbitrarily shaped

interfaces, each has its pros and cons. A clear-cut

boundary between vapor and liquid is preferable in or-

der to investigate the interface behavior and to evaluate

key quantities such as temperature gradient near the

bubble surface. Lagrangian methods maintains the in-

terface as a discontinuity and explicitly tracks its

evolution, therefore the boundary conditions can be

applied at the exact location of the interface. To apply

Lagrangian methods, a boundary-®tted grid is created

such that the grid dynamically conforms to the moving

interface. That is, the grid itself is also moving. Mathe-

matically speaking, it is expressed as

n � n�r; z; t�; c � c�r; z; t�; �40�

where the �r; z� domain changes with time while �n; c�
domain is ®xed. The time derivative of a physical

quantity, say vorticity n�r; z; t�, on the moving domain
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�r; z� can be related to its counterpart in the ®xed �n; c�
domain as

of
ot

� �
rz

� of
ot

� �
nc

ÿ r
J
�_rzc

h
ÿ _zrc�fn � � ÿ _rzn � _zrn�fc

i
:

�41�
The _r and _z are the velocity components of the image of

�n; c� moving on the �r; z� domain and can be approxi-

mated by the ®rst-order backward di�erence. Making

use of Eqs. (37), (38) and (41), we are able to rewrite

Eqs. (12) and (13) in terms of the moving curvilinear

coordinates [21]

J
of
ot
� o�U �f�

on
� o�V �f�

oc
ÿ J�uÿ _r�f

r

� 1

Re
�rAfn�n
�

� �rBfc�n � �rBfn�c � �rCfc�c ÿ
Jf
r2

�
;

�42�

�rAwn�n � �rBwc�n � �rBwn�c � �rCwc�c
ÿ 2�zcwn ÿ znwc� � ÿrfJ ; �43�

where U � and V � are contravariant velocities for the

moving boundary problem expressed as

U � � r�zc�uÿ _r� ÿ rc�vÿ _z��; �44�

V � � r�ÿzn�uÿ _r� � rn�vÿ _z��: �45�
These velocity terms naturally arise during the

mathematical transformation. Following the same pro-

cedure, we can derive the energy and species conserva-

tion equation in the curvilinear system

J
oh
ot
� U �

oh
on
� V �

oh
oc

� 1

RePr
�rAhn�n
h

� �rBhc�n � �rBhn�c � �rChc�c
i
;

�46�
J

oui

ot
� U �

oui

on
� V �

oui

oc

� 1

ReSc
�rAuin�n
h

� �rBuic �n � �rBuin�c � �rCuic�c
i
:

�47�
3.5. Grid generation

The physical domain must be covered by a mesh so

that conservation laws can be applied onto each discrete

element. In the present study, elliptical scheme [24] is

used to perform the grid generation. Fig. 2 shows a

70 ´ 70 boundary-®tted grid around a rising bubble,

wherein the grid is clustered toward the bubble surface.

The grid must be regenerated at each time step so that it

can dynamically adapt to the changing shape of a col-

lapsing bubble.

3.6. Algorithm

The problem, from the numerical point of view, is to

solve Eqs. (42), (43), (46) and (47) subject to all of the

initial and boundary conditions speci®ed above. Since

the momentum equations are not coupled with the en-

ergy and species continuity equations, we can solve them

separately. The energy equation, however, is coupled

with the species continuity equation and they have to be

solved simultaneously. To start the computation, the

grid velocity for the very ®rst time step must be guessed

[2] or determined from a similar theoretical solution [1].

Thereafter, they are computed numerically from the

previous time step. It turned out that this approach

produced no adverse e�ect on the bubble collapse rate

for a pure substance [1]. The iterative solution algorithm

is outlined in Fig. 3. The algorithm requires regenerating

the adaptive grid and performing metrics calculation at

each time step.

4. Results and discussion

To assess the accuracy of the numerical method de-

veloped in this study, the ¯ow ®eld surrounding a solid

sphere is numerically solved. The result is compared to

the ¯ow visualization experiment results, see [21] for

details. This exercise is a validation of the ¯ow solver

developed in our program. It justi®ed the curvilinear

system transformation involved in our algorithm,

proved the e�ciency and stability of discretization pro-

cedure employed in this study, and ®nally con®rmed

that the number of nodes used (70 ´ 70) is su�cient to

provide adequate accuracy and the ®nite di�erence

solution is independent of the grid size. Fig. 4 demon-

strates good agreement between the experimental ¯ow

visualization and streamlines obtained from our nu-

merical simulation.

Fig. 2. Boundary-®tted grid around a collapsing bubble.
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We now proceed to analyze the bubble collapse

problem. Table 1 lists typical operating conditions of

an ammonia-water generator±absorber-heat-eXchange

(GAX) absorber. The initial volume equivalent bubble

diameter is 4 mm. Fig. 5 shows a sequence of instanta-

neous ¯ow, temperature and species concentration

patterns. Initially, the bubble takes an oblate ellipsoidal

shape with a longer anterior semi axis than the posterior

semi axis. The impact of higher temperature and am-

monia concentration at the bubble surface is limited to

the area close to the bubble interface while most of the

liquid is undisturbed. As time proceeds, the bubble is

being absorbed, the heat released at the bubble interface

is dissipated into the bulk liquid through convection

and, the liquid around the bubble is being heated. The

bubble volume and the vapor mass encapsulated within

Fig. 3. Overall solution algorithm ¯owchart.
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are gradually diminishing. As the bubble shrinks, its

shape changes from double semi-ellipsoidal shape pro-

gressively toward spheroid. At t� 3.0 s, the bubble is

about 35% of the initial size and has become fairly close

to be spherical.

Although a circulating ¯ow pattern in the form of

wakes is considered as an inherent characteristic for the

¯ow around a blunt object, Fig. 5 shows no wake behind

the collapsing bubble. The existence of a standing wake

in the ¯ow past a solid body is believed to be a conse-

quence of boundary-layer separation. The no-slip con-

dition at the body surface causes a de®cit of momentum

in the ¯uid nearest the boundary compared to what it

would have in the free stream or potential ¯ow. Thus,

the ¯uid in this boundary region does not retain enough

kinetic energy to overcome the pressure rise at the rear

of the body, and breaks away into the main body of

¯uid. However, such argument cannot be used in sep-

aration at a zero-shear-stress interface because the ¯uid

does not come to rest at the interface. Therefore, the loss

of kinetic energy of the ¯uid in the boundary layer is not

as signi®cant as that in the no-slip case. Batchelor [26]

argued that for a free surface the boundary layer sepa-

ration is a consequence of the development of standing

wakes behind the body due to the accumulation of

vorticity brought to this area by convection, rather than

vice versa. This evolution-type view is supported by the

fact that while separation in laminar ¯ow is always ac-

companied by standing wakes, the standing wakes be-

hind a body may exist without separation [27,28]. In line

with the viewpoint expressed above, the crucial condi-

tion for existence of standing wakes (or boundary layer

separation) is the generation of vorticity at a su�cient

rate. The vorticity generation depends on bubble cur-

vature and boundary condition at the bubble surface.

First, larger curvature due to bubble deformation leads

to greater vorticity generation while smaller curvature

results in less vorticity generation [9,21]. As We in-

creases, bubble deformation increases, so does the

maximum surface curvature and vorticity. Second, the

zero-shear-stress inhibits the vorticity generation as op-

posed to the no-slip condition. For a ®xed size bubble

with enough curvature or deformation, a standing wake

does exist but is weaker than that behind a rigid object

with the same geometry [9,21]. Since the bubble is col-

lapsing and approaching spherical shape, the vorticity

generation becomes weaker while bubble curvature be-

comes smaller as the collapse proceeds. In addition,

bubble life span is fairly short, there is not enough time

for vorticity to be accumulated and convected down-

stream to build a standing wake. Therefore, the de-

creasing curvature and short life span of the bubble are

two major factors that prevent wake formation behind a

collapsing bubble. Given the fact that no wake is formed

behind a collapsing bubble, it appears that potential

¯ow could be a valid solution to the entire external ¯ow

®eld around a bubble. However, the velocity derivatives

given by the potential ¯ow solution would not satisfy

zero tangential stress condition at the bubble surface

[8,21]. Moreover, fore-and-aft symmetry does not hold

anymore, no potential ¯ow solution exists for a non-

spherical bubble undergoing progressive shape change.

The wake would have accelerated the bubble absorption

if it were created. The absence of wake implies that the

¯ow ®eld is less agitated. The impact of temperature and

concentration variation is limited to the area adjacent to

the bubble surface and the traveling path of the bubble.

From absorber design point of view, it indicates greater

absorber size.

Bubble collapse is a transient process involving

simultaneous volume reduction and shape alteration.

Fig. 6 illustrates the history of a collapsing bubble. The

subcooling of the ambient liquid is about 5.56°C, which

corresponds to Ja� 6.28. The bubble is traveling at its

terminal velocity that is approximately 0.206 m/s given

by Grace's correlation. Fig. 6 demonstrates the instan-

taneous bubble size, bubble shape and associated elapse

time and the exact location of the bubble relative to its

initial location. It shows that the bubble shape pro-

gressively evolves into spherical shape as it shrinks in

size, primarily because the bubble base becomes more

spherical. About 0.9 s after its introduction to the sub-

cooled ambient liquid, the bubble equivalent diameter is

less than 2% of its initial diameter which is considered as

the end of the bubble life in the present study. Bubble

life span and its traveling distance depend largely on the

Fig. 4. Comparison of stream function contours with exper-

imental visualization. (1) Left: Taneda's [25] ¯ow visualization

Re � 73:6. (2) Right: current numerical simulation Re � 73:6.

Table 1

Typical absorber operating conditions

Vapor concentration of ammonia 0.996

Bulk liquid concentration of ammonia 0.1

Bulk liquid temperature (°C) 94.7

Pressure (kPa) 501
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Fig. 5. Dimensionless streamlines, temperature and species concentration contours (Re� 100, We� 3.4, D0� 4 mm): (a) t � 0:1 s;

(b) t � 0:5 s; (c) t � 1:0 s; (d) t � 2:0 s; (e) t � 3:5 s.
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initial bubble size. For the case considered in Fig. 6, the

distance that the bubble travels in the translatory mo-

tion during its lifetime is around 180 mm, which can be

viewed as a ®rst-order approximation of the absorber

size.

Bubble collapse time increases with the bubble size

because more vapor is enclosed in the bubble. However,

the quantitative relationship between the collapse time

and the bubble size is not so intuitive. Fig. 7 presents

some basic understanding. Bubbles with di�erent sizes

may have di�erent shapes and terminal velocities, which

could signi®cantly change the ¯ow pattern and tem-

perature, concentration distribution around the bubbles.

Table 2 associated with Fig. 8(a) illustrates the bubble

collapse time as a function of initial bubble diameter and

Reynolds number. The shaded cells in Table 2 indicate

that Reynolds numbers are corresponding to the actual

terminal velocities based on the bubble diameters. As the

bubble diameter increases, Re also increases. The even-

tual e�ect is that the bubble collapse time is longer for

larger bubbles but is less extended than it would have

been if it were at smaller Reynolds number. Fig. 8(b)

presents the bubble traveling distances at di�erent initial

bubble diameters and Reynolds number. The distance

can be viewed as an indication of the desired bubble

column height. For instance, a bubble with 6 mm initial

Fig. 6. Bubble collapse process (We� 3.4, Re� 2290, Ja� 6.28, D0� 4 mm).
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diameter moving at its terminal velocity (corresponding

to Re� 3298) in a subcooled liquid with Ja� 6.28 and

ambient concentration X1 � 0.1 will have traveling dis-

tance of 354.6 mm.

5. Conclusion

A comprehensive model has been developed which

reasonably describes the bubble collapse dynamics in a

subcooled binary mixture. The results are subject to

further experimental veri®cation. Assessing the accuracy

of the numerical model proved to be di�cult because of

limited research on non-spherical bubble collapse in the

binary solution. However, this study has provided in-

sights into fundamental bubble absorption dynamics in

binary solutions taking placing in GAX absorber.

1. Numerical results demonstrate that the bubble pro-

gressively approaches spherical shape as it collapses.

2. Rapid reduction of bubble size and zero tangential

stress at the bubble interface suppress the vorticity

generation and accumulation, which prevents bound-

ary layer separation and wake development.
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