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Abstract

Mechanics of bubble collapse in binary mixtures with heat and mass transfer has been investigated in this paper. The
flow field surrounding a collapsing bubble undergoing buoyancy-driven motion was solved using adaptive finite-dif-
ference method. A curvilinear coordinate system is employed to keep track of the changing bubble shape. The moving
boundary feature is considered as an integral part of the governing equations. The bubble collapse rate, velocity,
temperature and species concentration field, and simulation of the bubble collapsing process have been

reported. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bubbles, as fluid particles, are of importance in a host
of physical and chemical processes that involve gas—
liquid interaction. Bubble collapse is one of the primary
phenomena occurring in bubble column reactors and
bubble absorbers in the absorption refrigeration sys-
tems. The fluid mechanics of bubble collapse, upon
which the heat and mass transfer are strongly depen-
dent, is particularly complex and its knowledge is lim-
ited. So far, there are only few reported results on
spherical bubble collapse based on potential flow as-
sumptions [1,2].

An important analytical solution for flow around
fluid spheres was given by Hadamard [3] and Ry-
bezynski [4]. The solution is derived for slow viscous
flow past fluid spheres when the viscous effect is so
pronounced that the bulk convection can be neglected,
namely creeping flow. As the Re increases, the creeping
flow condition no longer exists. Levich [5] adopted
boundary layer theory and predicted the velocity profile
near the bubble surface. His work was later proved valid
up to Re of 200 by Hamielec et al. [6] using finite dif-
ference method. Brabston [7] also studied the steady
viscous flow past a fixed size spherical gas bubble for Re
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in the range of 0.1 < Re<200. He used the method of
series truncation to reduce the problem to a nonlinear
boundary value problem, then solved it by the finite
difference method. Bubble shapes may be altered when
the bubble rises through the ambient liquid. The defor-
mation of bubbles is subject to the external flow field
until normal and shear stresses reach balance at the in-
terface. Generally, a bubble in an unbounded New-
tonian fluid may take one of the following shapes during
its life span: spherical, ellipsoidal, ellipsoidal-cap and
spherical-cap. Clift et al. [8] provided a shape regime
map for bubbles and drops. Bubbles are ellipsoidal at
relatively high Re and intermediate Eo (= Apgd?/o),
spherical- or ellipsoidal-cap at high Re and Eo. Large
bubbles and drops tend to have flat bases and lack the
semblance of fore-and-aft symmetry. These fluid parti-
cles usually have “spherical-cap” or ‘ellipsoidal-cap”
shape.

Ryskin et al. [9,10] developed a numerical scheme to
investigate the wake structures behind fixed size ellip-
soidal and spherical-cap bubbles under steady-state
condition. It was shown that the bubble shape and the
velocity and pressure fields in the fluid are intimately
interconnected. Later, Takagi et al. [11] extended
Ryskin’s results to unsteady-state condition.

Florschuetz [12] made use of Plesset-Zwick [13]
temperature integral and identified that bubble collapse
could be controlled by heat transfer or liquid inertia in a
single component system. For bubble collapse at mod-
erate temperature difference between the vapor and the
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Nomenclature

a semimajor axis

b semiminor axis

d bubble diameter (m)

Dy initial bubble diameter (m)

D;; mass diffusivity (m? s7!)

Eo  Eotvos number (= Apgd? /o)

h enthalpy (J kg™!) or bubble surface profile

Ahy,  heat released per unit mass of vapor absorbed
(kg™

J Jacobian term

Ja Jakob number (= p,CAT/p,(hy — hy))

k conductivity (W m~! K1)

7 mass reduction rate (=dm/df) (kg s™')
Mo  Morton number (= p*gAp/p*a?)

n normal direction

)4 pressure (Pa)

Pr Prandtl number (= v/a)

r axisymmetric coordinate

R bubble radius (m)

R bubble collapsing rate (=dR/dr) (m s~')
Re Reynolds number (= pUtDy /1)

Sc Schmidt number (=v/D;;)

t time (s) or tangential direction

T temperature (K)

T stress tensor

u velocity component in r direction (m s™')
U, bubble terminal velocity (m s™!)

U~ contravariant velocity component

v velocity component in z-direction (m s~')
V* contravariant velocity component

Vln normal velocity of liquid at the interface

(ms™)
We  Weber number (= pUZ2d /o)
z axisymmetric coordinate

Greek symbols

o thermal diffusivity (m? s=!)

y curvilinear coordinate component

n curvilinear coordinate component

10 normalized mass concentration (= (w—wy)/
o)

0 dimensionless temperature

u dynamic viscosity (kg m~! s71)

v kinematic viscosity (m? s~')

P total density of liquid, i.e., p; (kg m~3)
15 surface tension (N m™')

T stress (Pa)

w; mass concentration of ammonia (= p,/p)
; mass concentration of water

4 curvilinear coordinate component

v dimensionless stream function

{ dimensionless vorticity

Subscripts
0 initial value
e equivalent

i ammonia

J water

1 liquid

S interface

v vapor

00 ambient

subcooled liquid, the heat transfer dominates the volu-
metric decrease of the bubble. Using holographic inter-
ferometry and high-speed cinematography, Chen et al.
[14] measured the heat transfer at the interface of vapor
bubbles condensing in a subcooled liquid of the same
substance. Their experiment suggests that bubble col-
lapse can be considered heat transfer controlled if Jakob
number is below 60.

Vapor bubbles absorbed into subcooled multi-com-
ponent solutions are common occurrences in absorbers
and other gas-liquid contacting equipment. Combined
heat and mass transfer adds some complexity to the
bubble absorption problem. But the major difficulty
still lies in obtaining accurate description of fluid mo-
tion around a non-spherical collapsing bubble. The
impact of the flow field on the collapse rate has been
recognized but little is known. This paper examined the
importance of three factors in bubble collapse dy-
namics: non-spherical bubble shape, fluid dynamics
around a collapsing bubble and absorption in binary
solutions.

2. Problem formulation

We are concerned with the specific problem of the
buoyancy-driven motion of a single bubble in an un-
bounded quiescent binary fluid accompanied by the
bubble collapse due to the subcooling of the ambient
liquid. The fluid is assumed to be Newtonian. The
bubble undergoes translatory movement without oscil-
lation at its terminal velocity. The bubble volume de-
creases as heat and mass transfer occurs through the
interface. Since mass diffusion causes heat-release during
an exothermic process, heat transfer near the bubble
surface has phenomenal impact on the mass transfer.
Inside the bubble, the temperature and concentration
distributions are presumed to be uniform. This is sup-
ported by the fact that the internal circulation facilitates
creating uniform fields. Outside the bubble, the liquid is
assumed to be incompressible and have constant ther-
modynamic and transport properties except for tem-
perature and concentration. At the bubble interface,
thermal equilibrium prevails and free surface is assumed.
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Since the bubble shape is normally axisymmetric, the
flow around the bubble is also assumed axisymmetric.

The collapsing process starts immediately after a
bubble is introduced into a subcooled liquid. From an
observer’s point of view, the bubble is rising through the
quiescent liquid. But it can also be viewed as the liquid
flowing past a stationary bubble. The formulation of the
problem is facilitated by choosing the centroid of the
bubble as the origin of the coordinate system. In line
with the above assumptions, the governing equations
can be expressed as

0(rQ) O(*E) 0O(F) O(E,) O(F,)
= H 1
% T ot o e v O
where
p pu pv
pu puu puv
Q=|pv |, E=]|puw |, F=| pw |, (2)
pe pue pve
Pi piu piv
0 0 0
Trr Trz 7‘[00/7
Ev = Tzr 5 Fv = Tz 5 H= —pg )
—qr —q: 0
—Jir _jiz 0
3)
Ou or
Tr)':_p+21u57 qr:_k57
Tzz:_p+2.u@7 qz:_ka_T7
Oz Oz )
Y A n Ou . __p op;
T =Tz = U ar aZ ) Jir = ij ar )
u op;
Tog = —p + 2#;, Jie = —Dﬂé»

The axisymmetric coordinates being used is shown in
Fig. 1 wherein z-axis is the symmetric axis about which
the oblate object is formed by revolution. The subscripts

et

Fig. 1. Axisymmetric coordinate system.

i and j refer to species i and j, respectively. D;;=Dj
denotes mass diffusivity.

The governing equations can be expanded and
transformed into non-dimensional form by introducing
the following non-dimensional variables:

, r , z , Ut
F=—, =21 =21,
Dy Dy Dy
, u , U , p T—-T, W — Wioo
U=—, V=77, P ="77, 0= y Oi=—,
Ut U, pU? T Wiso
UtD U?
Re=P"20 g eV = (s)

D is the initial diameter of the bubble and U, is the
bubble terminal velocity, the magnitude of U, ranges
from 0.20 to 0.30 m/s. Bubble terminal velocity normally
is not constant and depends on many factors including
bubble shape and size, etc. But experimental evidence
shows that the bubble moves with a nearly constant
velocity over a major portion of its life span. For the
bubble diameter from 1 to 20 mm, which is the range we
are most interested in, the bubble terminal velocity is
nearly unchanged [8]. Chen and Mayinger [14] used
high-speed cinematography technique studying heat
transfer around a condensing bubble. Their experiment
demonstrated that the bubble reaches a constant equi-
librium velocity shortly after detaching from the nozzle.
In practice, many correlations have been developed to
predict terminal velocity among which Grace’s correla-
tion is used in this paper [8].

After dropping the prime for simplicity, we arrive at
the dimensionless governing equations:

(a) continuity equation

o(ru)  0(rv)

or + 0z

(b) r-momentum equation

=0, (6)

r

Ou Ou ou_  Op 1 , u
At e = e e (V)

o 1 (010 Qu
=Rl o] v | @)
(¢) z-momentum equation

o o v O 1, 1

5“’5“&_762 Re Fr

op 1 (10 [ dv v 1
__§+E{?5(’5) *@}—ﬁ ®)
(d) energy equation
00 o0 00 1 _,

Pr
1 10 00 %0
:m{;a(E%@} ©)
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(e) species continuity equation

Op;, d¢; 09, 1 _,

@t+uar+vaz_Rechq)i
—_1 lﬁ 9¢; _‘_%
“ReSc | ror\"or o2 |’
(10)
where
10 0 0? > 10 @
2 1O f O A
v _r6r<rar>+622 m re e (1)

The axisymmetric assumption allows us to transform
the momentum equations given above into the stream
function-vorticity type

oL 0(ut) | o(vl) _ 1 {a {13

or

o or oz  Re ror

]+

oy 1o v, (13)

or ror 0z

where  and { are dimensionless stream function and
vorticity defined as

10 10
PR L. ”

r oz’ ror’

L o 1y 6<16¢), (15)

oz or ror

T 0z o roz2 or

Initially, the entire system is assumed to be at uni-
form temperature, pressure and concentration which
coincide with the bulk liquid condition

u=0, v=-1, 0=0, ¢,=0. (16)

Boundary conditions are specified at three distinct
locations: at the symmetric axes, at the far field and at
the interface.

(1) At the symmetric axis (z=0):

Ou ov 00 O0p;

%5 =% 570, 570, 570. (17)
(2) At the far field (r = c0):

u=0, v=-1, 0=0, ¢,=0. (18)

(3) At the bubble surface, the vapor-liquid interface is
treated as a free surface. Generally, free surface requires
satisfaction of zero tangential stress at any point on the
bubble surface. Let us assume the state of stress at one
point on the free surface is described by the stress tensor
T. Then the tangential stress can be expressed as [15]

(Ten)et= (Ten),et,+(T en),et,

2 2
= T2, + T..00, — T 00, — 1,000, (19)

where n,, n., t, and ¢, are unit vectors defined as

- 1 o —(Oh/dz)
1/1+(6h/62)27 \/1+(6h/6z)27
o oo . _.
1+ (0h /) ’ i+ @rjeey
(20)

h(z,t) denotes the bubble surface profile and
In| = |t| = 1. Zero tangential stress means

2 2
Tpol + Tl — Tyl — Ty o0, = 0. (21)

This condition determines the tangential velocity of
the liquid on the bubble surface. Using Egs. (4) and (5),
we can rewrite Eq. (21) in the following forms:

ov  Qu 2 v du\,,

where /' = 0h/0z.

(4) Bubble surface temperature is assumed to be con-
stant. This is consistent with the fact that the gas inside
the bubble is assumed to be uniform in temperature and
concentration due to internal circulation. Usually, the
bubble surface temperature may vary with the location,
but the degree of variation is very small. This can be ex-
plained as the result of strong diffusion in the vapor phase
compared to diffusion in the liquid phase [2]. Internal
circulation contributes to an evenly distributed temper-
ature and concentration field inside the bubble and along
the bubble interface [8]. The bulk liquid is subcooled and
the degree of subcooling is the driving force of the bubble
collapse. The degree of subcooling normally ranges from
3°C to 11°C depending on operating conditions. Com-
pared to the degree of subcooling, the bubble surface
temperature variation can be neglected.

(5) Finally, thermal equilibrium assumption at the
interface leads to

Wjs :f(Tsvp)v (23)

which means the mass fraction of species i can be de-
termined from the interfacial temperature and pressure.
w; represents the mass fraction of species 7 in the liquid
and is defined as w; = p;/p. p; is the mass concentration
of species i, and p is the total mass concentration of the
liquid. For the binary mixture,; + w; = 1. The prop-
erties of ammonia-water mixture were evaluated by
McGabhey’s code [16] that uses source data from Reistad
[17], Klein [18] and Ziegler [19].

Although the physical problem has been greatly
simplified with many assumptions, it is still an unsteady,
two-dimensional axisymmetric, moving boundary,
phase change problem. These complexities make the
mathematical problem as proposed not amenable to
analytical solution. As a result, numerical method is
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deemed to be a feasible approach. However, successful
numerical solution demands more than a well-posed
mathematical model. First, computational domain has
to be well defined, which in our case requires consider-
ation of irregular domain representation such as curvi-
linear coordinate system. Second, the moving boundary
problem will add some complexity to the original gov-
erning equations.

3. Analysis
3.1. Bubble shape

In this study, a model proposed by Grace [20] is
employed to simplify the prediction of the deformation
of a fluid particle, otherwise the normal stress boundary
condition must be used to determine bubble shape [21].
The approximate model is termed ‘“double semi-ellip-
soidal model”” which assumes a distorted fluid particle is
of a double semi-ellipsoidal shape as depicted in Fig. 1.
The model has two equations to determine the two semi
minor axes, b; and b,, provided the semi major axis a is
given. It assumes that the shape of a particle is primarily
a function of hydrostatic pressure, surface tension, and
external hydrodynamic pressure forces. The model
considers the force balance the key factors dictating the
bubble shape. The two equations proposed for double
semi-ellipsoidal model are:

1
ZEo(l —e))'"*(1—cosn,)

(=) |2 (2—é}sin’n,) N Wesin’1,
! (1—esin’n,)? | 4k3(1—elsin’n,)’
(24)
3 2
@+E@(%)—4(%) -4=0, (25)

2
&:O—ﬁ) @:é@f@—qu—@myua
i

The above equation is numerically solved for e¢; and
b,. The model predicts a gradual and progressive flat-
tening of the posterior portion of the bubble as we will
see later. The surface tension tends to maintain a
spherical shape whereas the dynamic forces act to flatten
and hydrostatic forces act to elnogate. The final shape of
the bubble is the balance of the three effects.

3.2. Bubble collapse rate

The bubble collapse rate is an important parameter
in the analysis of bubble collapse dynamics and can

be determined by the energy balance at the bubble
interface

or
Ty ek 27

where 7" is the total mass flux from vapor to liquid,
which is actually the absorption rate in binary solutions.
It is positive when the vapor mass is absorbed into the
liquid. A/, represents the heat released per unit mass of
vapor absorbed and it is evaluated at constant pressure.
Ahyy, = hy — by — (xy — x1)(0h/ ax)p. The absorption rate
can be evaluated by adding up the mass fluxes of com-
ponent i and j, where mass flux of each component is the
total effect of molecular diffusion and bulk convection
[22]

rh// — mil + ’h;/

= { —PDzy(%)s + pi(Vin — R)}
+ {prﬁ (%)S + p; (01 — R)} : (28)

where vy, is the normal velocity of the liquid at the in-
terface. For a collapsing bubble, the liquid normal ve-
locity at the bubble surface is related to the bubble
surface moving velocity R through the mass balance
across the interface [2]

Py(Vvn — R) = p;(Via — R) (29)
Neglecting the vapor velocity [12], we obtain
Uln :R(l _pv/pl) %R, (30)

since p, < p, is usually valid. This indicates the liquid
normal velocity at the bubble interface is almost iden-
tical to the bubble interface moving velocity. If there is
no mass transfer across the interface, vy, is strictly
identical to R. Making use of Eq. (30), we can simplify
Eq. (28) into

.y Ow; ;
' = [—/)Dzl(a) +P[(Ul.n—R)}

ow;
+ {— pD;i (6_nj> + p; (v — R)] =—pR, (31)

R = dR/dt is the rate of bubble radius reduction and is
called bubble collapse rate in this study. It is so defined
that it has a negative value when the bubble is shrinking.
Now Eq. (27) can be rewritten in non-dimensional form

. kT. a0
R=—72__(_->]. 32
Py UtA/’lh,D() ( on’ )S ( )

This equation shows that the temperature gradient
around a bubble is one of the factors dictating the
bubble collapse rate. Since the temperature gradient at
the bubble surface is negative in our case, the bubble
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collapse rate has a negative value, which is consistent
with our sign convention.

3.3. Curvilinear coordinate system

A curvilinear coordinate system provides a flexible
means to keep track of the changing boundary shape.
The implementation of a curvilinear coordinate system
is through mapping the physical domain (r,0,z) to the
computational domain (&,1,y). To improve the resolu-
tion in certain regions of the physical field, the grid is
made clustered toward the bubble interface so that the
large variation in velocity, temperature and concentra-
tion can be captured truthfully. We know

0 0 0

a: éra_é+’Yra_va

9_.0..2
2 “faE gy

(33)

The subscripts denote derivatives with respect to the
corresponding variables. The question is to express &,,
&, ¥, 9. in terms of re, r,, ze, z,. This is achieved by
utilizing general 3-D mapping function [23]. Generally,
we can configure a one-to-one mapping from (x,y,z)
coordinate system to another coordinate system (&, 1, y):
(x,y,2z) < (&,m,7). But in our case, the axisymmetric

condition says,
x=r(&y)cosn, y=r(y)sing, z=z(¢y).  (34)

Using the above equations and after some algebraic
manipulation, we obtain [21]

_ B WA _TE
&= 7 T
_ NI Xy
éy J ’
& = Xy =X )y _ 1y
¥4 J J b
", :y}’Zﬁ ; 2y — 07
_nXe—zex, 1 35
y 7 o (35)
Ve — Xy
7’]2 - = 07
J
7 _ VB T WFe _ _ﬂ,
’ J J
7, = ZeXy ;anc’ -0,
_ Xy — XyYe 1T
’VZ - # - 77

where J is the Jacobian given by

Xe Ve oz re 0z
re  Zeg
J=\x, ¥ z|=]0 r O0|=r -
X, ¥ oz r, 0 z [

=r)y = r(rezy, — ryze) (36)

and rg, 7y, ze, z,, etc. are called the metrics of the trans-
formation. Substituting all the available derivatives back
into Eq. (33), we have

o .0 0 r ] 0

o Cra—é-i- /ra—y*j (Z"f'a_g_zia_«,v)’

0 0 o r 0 0

— j(—r],a—é—i-rta—y).
These equations will be used to transform governing

equations and associated boundary conditions from

axisymmetric system into the curvilinear system. Besides

above equations, Laplace operator is frequently used in

Navier-Stokes equation, and it can be expressed in the

curvilinear coordinates as

110 0 0 0
2 — | = . _ _
Va=7 {aé (rAéé) 58 (rBév)

(37)
&Z gzaf—"_’yza_y_

0 0 0 0
—[rB= — [ rC— 38
va (75) v, (5| &)
where
Z4r zezy + rer, T4t
A=" a _ % <y — ¢ < . 3
A g C 7, (39)

With the above knowledge, we are able to rewrite the
governing equation and associated boundary conditions
in terms of the curvilinear boundary-fitted coordinates.
But before doing that, let us consider the moving
boundary feature since it has to be incorporated as an
integral part of our governing equation in the curvilinear
coordinate system.

3.4. Moving boundary feature

For a moving boundary problem, the boundary
changes its spatial location with time. In our case, the
bubble surface is moving as the bubble collapses. There
exist several techniques for tracking arbitrarily shaped
interfaces, each has its pros and cons. A clear-cut
boundary between vapor and liquid is preferable in or-
der to investigate the interface behavior and to evaluate
key quantities such as temperature gradient near the
bubble surface. Lagrangian methods maintains the in-
terface as a discontinuity and explicitly tracks its
evolution, therefore the boundary conditions can be
applied at the exact location of the interface. To apply
Lagrangian methods, a boundary-fitted grid is created
such that the grid dynamically conforms to the moving
interface. That is, the grid itself is also moving. Mathe-
matically speaking, it is expressed as

é:cf(r,z,t), ’y:‘y(}",Z,l), (40)

where the (r,z) domain changes with time while (&,7)
domain is fixed. The time derivative of a physical
quantity, say vorticity ¢(r,z,¢), on the moving domain
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(r,z) can be related to its counterpart in the fixed (¢,7y)
domain as

(%) = <%) _§[(i’zv_2”7)45"‘(_”5"‘2”:)@ :

(41)

The 7 and z are the velocity components of the image of
(¢,7) moving on the (r,z) domain and can be approxi-
mated by the first-order backward difference. Making
use of Egs. (37), (38) and (41), we are able to rewrite
Egs. (12) and (13) in terms of the moving curvilinear
coordinates [21]

g Ay a0 Ju—#)l

o o¢ oy r
= Rie (rdLe): + (rBL,), + (rBC:), + (rCE,), — {é 7
(42)
(V) + (BY,); + (BY), + (C),
=2z —zey,) = —rlJ, (3)

where U* and V* are contravariant velocities for the
moving boundary problem expressed as

U =rlz,(u—7) —r,(v—2)], (44)

V' =r[—z:(u—7) +r:(v—2)]. (45)

These velocity terms naturally arise during the
mathematical transformation. Following the same pro-
cedure, we can derive the energy and species conserva-
tion equation in the curvilinear system

a0 00 a0

J6—I+U6—5+Va—y

(40, + (B0, + (1B0.), + (rC0,),).

~ RePr
(46)
0, . 00; . 00;
S5 HU 2t 1% -
1
= = [(r0,) + 1Bo,). + (By,), + (Cy,),|.
(47)

3.5. Grid generation

The physical domain must be covered by a mesh so
that conservation laws can be applied onto each discrete
element. In the present study, elliptical scheme [24] is
used to perform the grid generation. Fig. 2 shows a
70x70 boundary-fitted grid around a rising bubble,
wherein the grid is clustered toward the bubble surface.
The grid must be regenerated at each time step so that it
can dynamically adapt to the changing shape of a col-
lapsing bubble.

S5
SRS
S

SIS

SR
S SN s
SRIRLZ R
SRR

Fig. 2. Boundary-fitted grid around a collapsing bubble.

3.6. Algorithm

The problem, from the numerical point of view, is to
solve Eqs. (42), (43), (46) and (47) subject to all of the
initial and boundary conditions specified above. Since
the momentum equations are not coupled with the en-
ergy and species continuity equations, we can solve them
separately. The energy equation, however, is coupled
with the species continuity equation and they have to be
solved simultaneously. To start the computation, the
grid velocity for the very first time step must be guessed
[2] or determined from a similar theoretical solution [1].
Thereafter, they are computed numerically from the
previous time step. It turned out that this approach
produced no adverse effect on the bubble collapse rate
for a pure substance [1]. The iterative solution algorithm
is outlined in Fig. 3. The algorithm requires regenerating
the adaptive grid and performing metrics calculation at
each time step.

4. Results and discussion

To assess the accuracy of the numerical method de-
veloped in this study, the flow field surrounding a solid
sphere is numerically solved. The result is compared to
the flow visualization experiment results, see [21] for
details. This exercise is a validation of the flow solver
developed in our program. It justified the curvilinear
system transformation involved in our algorithm,
proved the efficiency and stability of discretization pro-
cedure employed in this study, and finally confirmed
that the number of nodes used (70x70) is sufficient to
provide adequate accuracy and the finite difference
solution is independent of the grid size. Fig. 4 demon-
strates good agreement between the experimental flow
visualization and streamlines obtained from our nu-
merical simulation.
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Input initial settings (time step, relaxation coefficients)
Input initial bubble size, vapor and liquid state points
Input initial conditions for u, v, T, X
Initial guess of bubble collapsing rate

Y

Calculate the thermodynamic properties of vapor and liquid,
initial mass of each species in the bubble, bubble terminal velocity

Y

Bubble shape computation
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Grid generation and metrics computation
Calculate grid velocity

| Solve vorticity equation iteratively

1

| Solve the stream function equation iteratively |

Y

| Calculate velocity based on stream-function |

(W (1) = T (1.D))]

‘ Sv ) ‘<10’R

Yes
| Solve energy equation for temperature iteratively | -

Y

| Solve species conservation equation for concentration iteratively |

Calculate species mass flux and total mass flux
Calculate new species mass and total mass in the bubble
Calculate new bubble dimensions

No

(1) =X 11.)

<1078

R or o= Ruew = Rou
47rRZpU dt

Calculate bubble collapsing rate:

No

R
nev_ nep

initial

Fig. 3. Overall solution algorithm flowchart.

We now proceed to analyze the bubble collapse
problem. Table 1 lists typical operating conditions of
an ammonia-water generator-absorber-heat-eXchange
(GAX) absorber. The initial volume equivalent bubble
diameter is 4 mm. Fig. 5 shows a sequence of instanta-
neous flow, temperature and species concentration
patterns. Initially, the bubble takes an oblate ellipsoidal
shape with a longer anterior semi axis than the posterior

semi axis. The impact of higher temperature and am-
monia concentration at the bubble surface is limited to
the area close to the bubble interface while most of the
liquid is undisturbed. As time proceeds, the bubble is
being absorbed, the heat released at the bubble interface
is dissipated into the bulk liquid through convection
and, the liquid around the bubble is being heated. The
bubble volume and the vapor mass encapsulated within
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Fig. 4. Comparison of stream function contours with exper-
imental visualization. (1) Left: Taneda’s [25] flow visualization
Re = 73.6. (2) Right: current numerical simulation Re = 73.6.

Table 1

Typical absorber operating conditions
Vapor concentration of ammonia 0.996
Bulk liquid concentration of ammonia 0.1
Bulk liquid temperature (°C) 94.7
Pressure (kPa) 501

are gradually diminishing. As the bubble shrinks, its
shape changes from double semi-ellipsoidal shape pro-
gressively toward spheroid. At t=3.0 s, the bubble is
about 35% of the initial size and has become fairly close
to be spherical.

Although a circulating flow pattern in the form of
wakes is considered as an inherent characteristic for the
flow around a blunt object, Fig. 5 shows no wake behind
the collapsing bubble. The existence of a standing wake
in the flow past a solid body is believed to be a conse-
quence of boundary-layer separation. The no-slip con-
dition at the body surface causes a deficit of momentum
in the fluid nearest the boundary compared to what it
would have in the free stream or potential flow. Thus,
the fluid in this boundary region does not retain enough
kinetic energy to overcome the pressure rise at the rear
of the body, and breaks away into the main body of
fluid. However, such argument cannot be used in sep-
aration at a zero-shear-stress interface because the fluid
does not come to rest at the interface. Therefore, the loss
of kinetic energy of the fluid in the boundary layer is not
as significant as that in the no-slip case. Batchelor [26]
argued that for a free surface the boundary layer sepa-
ration is a consequence of the development of standing
wakes behind the body due to the accumulation of
vorticity brought to this area by convection, rather than
vice versa. This evolution-type view is supported by the
fact that while separation in laminar flow is always ac-
companied by standing wakes, the standing wakes be-
hind a body may exist without separation [27,28]. In line

with the viewpoint expressed above, the crucial condi-
tion for existence of standing wakes (or boundary layer
separation) is the generation of vorticity at a sufficient
rate. The vorticity generation depends on bubble cur-
vature and boundary condition at the bubble surface.
First, larger curvature due to bubble deformation leads
to greater vorticity generation while smaller curvature
results in less vorticity generation [9,21]. As We in-
creases, bubble deformation increases, so does the
maximum surface curvature and vorticity. Second, the
zero-shear-stress inhibits the vorticity generation as op-
posed to the no-slip condition. For a fixed size bubble
with enough curvature or deformation, a standing wake
does exist but is weaker than that behind a rigid object
with the same geometry [9,21]. Since the bubble is col-
lapsing and approaching spherical shape, the vorticity
generation becomes weaker while bubble curvature be-
comes smaller as the collapse proceeds. In addition,
bubble life span is fairly short, there is not enough time
for vorticity to be accumulated and convected down-
stream to build a standing wake. Therefore, the de-
creasing curvature and short life span of the bubble are
two major factors that prevent wake formation behind a
collapsing bubble. Given the fact that no wake is formed
behind a collapsing bubble, it appears that potential
flow could be a valid solution to the entire external flow
field around a bubble. However, the velocity derivatives
given by the potential flow solution would not satisfy
zero tangential stress condition at the bubble surface
[8,21]. Moreover, fore-and-aft symmetry does not hold
anymore, no potential flow solution exists for a non-
spherical bubble undergoing progressive shape change.
The wake would have accelerated the bubble absorption
if it were created. The absence of wake implies that the
flow field is less agitated. The impact of temperature and
concentration variation is limited to the area adjacent to
the bubble surface and the traveling path of the bubble.
From absorber design point of view, it indicates greater
absorber size.

Bubble collapse is a transient process involving
simultaneous volume reduction and shape alteration.
Fig. 6 illustrates the history of a collapsing bubble. The
subcooling of the ambient liquid is about 5.56°C, which
corresponds to Ja=6.28. The bubble is traveling at its
terminal velocity that is approximately 0.206 m/s given
by Grace’s correlation. Fig. 6 demonstrates the instan-
taneous bubble size, bubble shape and associated elapse
time and the exact location of the bubble relative to its
initial location. It shows that the bubble shape pro-
gressively evolves into spherical shape as it shrinks in
size, primarily because the bubble base becomes more
spherical. About 0.9 s after its introduction to the sub-
cooled ambient liquid, the bubble equivalent diameter is
less than 2% of its initial diameter which is considered as
the end of the bubble life in the present study. Bubble
life span and its traveling distance depend largely on the
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Fig. 5. Dimensionless streamlines, temperature and species concentration contours (Re=100, We=3.4, Dy=4 mm): (a) t =0.1 s;
b)t=05s;(c)t=1.0s;(d)t=2.0s;(e)t=3.5s.
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Fig. 6. Bubble collapse process (We=3.4, Re=2290, Ja=6.28, Dy =4 mm).

initial bubble size. For the case considered in Fig. 6, the
distance that the bubble travels in the translatory mo-
tion during its lifetime is around 180 mm, which can be
viewed as a first-order approximation of the absorber
size.

Bubble collapse time increases with the bubble size
because more vapor is enclosed in the bubble. However,
the quantitative relationship between the collapse time
and the bubble size is not so intuitive. Fig. 7 presents
some basic understanding. Bubbles with different sizes
may have different shapes and terminal velocities, which
could significantly change the flow pattern and tem-
perature, concentration distribution around the bubbles.

Table 2 associated with Fig. 8(a) illustrates the bubble
collapse time as a function of initial bubble diameter and
Reynolds number. The shaded cells in Table 2 indicate
that Reynolds numbers are corresponding to the actual
terminal velocities based on the bubble diameters. As the
bubble diameter increases, Re also increases. The even-
tual effect is that the bubble collapse time is longer for
larger bubbles but is less extended than it would have
been if it were at smaller Reynolds number. Fig. 8(b)
presents the bubble traveling distances at different initial
bubble diameters and Reynolds number. The distance
can be viewed as an indication of the desired bubble
column height. For instance, a bubble with 6 mm initial
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Table 2
Bubble collapse time for different bubble diameters and Rey-
nolds number

Re=2290 Re =3298 Re=4266
Dy =4 mm 0.953 0.808 0.727
Dy = 6 mm 2.109 1.796 1.628
Dy =8 mm 3.773 3.218 2.908

diameter moving at its terminal velocity (corresponding
to Re=23298) in a subcooled liquid with Ja=6.28 and
ambient concentration X, =0.1 will have traveling dis-
tance of 354.6 mm.

5. Conclusion

A comprehensive model has been developed which
reasonably describes the bubble collapse dynamics in a
subcooled binary mixture. The results are subject to
further experimental verification. Assessing the accuracy
of the numerical model proved to be difficult because of
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Fig. 8. Bubble collapse time and traveling distance as a func-
tion of initial bubble diameter and Reynolds number (We = 3.4,
Ja=16.28): (a) collapse time; (b) traveling distance.

limited research on non-spherical bubble collapse in the

binary solution. However, this study has provided in-

sights into fundamental bubble absorption dynamics in

binary solutions taking placing in GAX absorber.

1. Numerical results demonstrate that the bubble pro-
gressively approaches spherical shape as it collapses.

2. Rapid reduction of bubble size and zero tangential

stress at the bubble interface suppress the vorticity
generation and accumulation, which prevents bound-
ary layer separation and wake development.
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